【多边形的外角和】1、多边形的外角和是360度 。
2、证明过程如下:设多边形的边数为n,则其内角和=(n-2)*180°,因为n边形有n个顶点 , 每个顶点的一个外角和相邻的内角互补,等于180°,所以n边形的外角和等于n*180°-(n-2)*180°等于360° , 即n边形的外角和等于360度 。
【多边形的外角和】1、多边形的外角和是360度 。
2、证明过程如下:设多边形的边数为n,则其内角和=(n-2)*180°,因为n边形有n个顶点 , 每个顶点的一个外角和相邻的内角互补,等于180°,所以n边形的外角和等于n*180°-(n-2)*180°等于360° , 即n边形的外角和等于360度 。