基本不等式公式有:a+b≥2√(ab) 。a大于0,b大于0,当且仅当a=b时,等号成立 。常用不等式公式:1、√(a^2+b^2)/2≥(a+b)/2≥√ab≥2/(1/a+1/b);2、√(ab)≤(a+b)/2;3、a^2+b^2≥2ab4、ab≤(a+b)^2/4;5、||a|-|b||≤|a+b|≤|a|+|b| 。
基本不等式的四种形式:
a2+b2≧2ab(a,b∈R)
ab≦(a2+b2)/2(a,b∈R)
a+b≧2√ab(a,b∈R﹢)
ab≦[(a+b)/2]2(a,b∈R﹢)【基本不等式的公式及变形 基本不等式的公式】
基本不等式应用:
1、应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等” 。所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件 。
2、在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式 。
3、条件最值的求解通常有两种方法:
?。?)一是消元法 , 即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;
?。?)二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子 , 然后利用基本不等式求解最值 。