【关于数学的手抄报4k 关于数学的手抄报资料】1、数学发展历史:
数学源自于古希腊语的μθημα(máthēma) , 其有学习、学问、科学之意 。古希腊学者视其为哲学之起点 , “学问的基础” 。另外,还有个较狭隘且技术性的意义——“数学研究” 。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的 。其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικ(ta mathēmatiká).
2、在中国古代 , 数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”) 。
3、数学起源于人类早期的生产活动 , 古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献 。
4、基础数学的知识与运用是个人与团体生活中不可或缺的.一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态 。
5、代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支 。
6、直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分 。
7、现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学 , 是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群 , 环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限 , 连通性,维数……)
8、数学被应用在很多不同的领域上 , 包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端 , 但之后也许会发现合适的应用 。具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学) 。