连续与可导的关系

【连续与可导的关系】可导一定连续,连续不一定可导 。连续是可导的必要条件,但不是充分条件 , 由可导可推出连续,由连续不可以推出可导 。可以说:因为可导,所以连续 。不能说:因为连续,所以可导 。
关于函数的可导导数和连续的关系1、连续的函数不一定可导 。
2、可导的函数是连续的函数 。
3、越是高阶可导函数曲线越是光滑 。
4、存在处处连续但处处不可导的函数 。
左导数和右导数存在且“相等” , 才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在) 。连续是函数的取值 , 可导是函数的变化率,当然可导是更高一个层次 。

相关经验推荐